Synthesis of the α and β anomer of an N-triglycosyl dipeptide*

Tadahiro Takeda, Atsushi Utsuno, Naoki Okamoto, Yukio Ogihara, Faculty of Pharmaceutical Sciences. Nagoya City University. Nagoya. 467 (Japan) and Seiichi Shibata[†] Clinical Research Institute, National Medical Center, 1-Toyama, Shinjuku-ku, Tokyo 162 (Japan) (Received October 10th, 1989; accepted for publication in revised form. February 4th, 1990)

ABSTRACT

 $O-\alpha$ -D-Glucopyranosyl- $(1\rightarrow 6)$ -O- β -D-glucopyranosyl- $(1\rightarrow 6)$ -1-N-[L-aspart-1-oyl-(L-proline)-4-oyl]- α -and - β -D-glucopyranosylamine have been prepared, as models for a derivative possibly present in the glomerular basement membrane of rats, by condensation of the corresponding D-glucosyl-dipeptide derivatives with 2,3,4,2',3',4',6'-hepta-O-acetyl- α -D-isomaltopyranosyl bromide in the presence of mercuric cyanide, followed by deprotection of the trisaccharide-dipeptide derivatives.

INTRODUCTION

Shibata et al.² isolated and purified from the glomerular basement membrane of rats a new glycopeptide (nephritogenoside) that was active for the induction of glomerulonephritis in homologous animals³. This glycopeptide is composed of three D-glucose units, α -D-Glcp-(1 \rightarrow 6)- β -D-Glcp-(1 \rightarrow 6)-D-Glc, and 21 amino acids [¹Asn-Pro-Leu-Phe-Gly-Ile-Ala-Gly-Glu-Asp-Gly-Pro-Thr-Gly-Pro-Ser-Gly-Ile-Val-Gly-²¹Gln], and the (potentially) reducing α -D-glucose unit is linked N-glucosylically to an N-terminal asparagine unit⁴. The synthesis of model glycoproteins and glycopeptides is important because these compounds may have many biological properties. In our previous papers⁵, we reported the syntheses of an N-glycosyl linkage between the trisaccharide glucosylamine, O- α -D-glucopyranosyl-(1 \rightarrow 6)-O- β -D-glucopyranosyl-(1 \rightarrow 6)-O- α -D-glucopyranosylamine and L-aspartic acid or L-glutamic acid (or both), of the glycopeptide and of the neoglycoprotein, as models of corresponding derivatives possibly present in the glomerular basement membrane of rats.

The protected glycopeptide, O-(2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl)-(1 \rightarrow 6)-O-(2,3,4-tri-O-acetyl- β -D-glucopyranosyl)-(1 \rightarrow 6)-2,3-di-O-benzyl-1-N-[N-(tert-butoxycarbonyl)-L-aspart-1-oyl-(L-proline methyl ester)-4-oyl]- α -D-glucopyranosylamine (7 α) was obtained by coupling the respective monosaccharide derivative, 2,3-di-O-benzyl-1-N-[L-aspart-1-oyl-(L-proline methyl ester)-4-oyl]- α -D-glucopyranosylamine

^{*} Part IX. The Nephritogenic Glycopeptide from Rat Glomerular Basement Membrane. For Part VIII, see ref. 1

[†] Deceased September 25, 1989.

72 T. TAKEDA et al.

(6a) and 2,3,4,2',3',4',6'-hepta-O-acetyl- α -D-isomaltosyl bromide. Removal of the *tert*-butoxycarbonyl group and deacylation of compound 7α , followed by debenzylation gave 10α , which is a suitable key compound for completion of the nephritogenoside synthesis. The method described is generally applicable to the attachment of oligopeptides for elongation of the peptide residue, and the β anomer (10β) of the trisaccharide-dipeptide was also prepared.

RESULTS AND DISCUSSION

The present synthesis of the glycopeptide differs from those previously reported⁵ in that the 2,3-di-O-benzylated synthon was used to avoid acetyl protecting groups. This benzyl protecting group was chosen so that the u.v. absorption of the resulting product would give an indication of its identity. 2,3-Di-O-benzyl- α -4,6-O-isopropylidene, β -Dglucopyranosylamine (4a,4B) was obtained by hydrogenation, in the presence of Lindlar's catalyst of 2,3-di-O-benzyl-4,6-O-isopropylidene-α-D-glucopyranosyl azide (3), which had been prepared from α-D-glucopyranosyl azide⁶ (1) by isopropylidenation and benzylation. The mixture of 4a.4B was coupled with the dipeptide. N-(tert-butoxycarbonyl)-L-aspart-1-oyl-L-proline methyl ester (12), in the presence of O₁O-diethylcyanophosphonate (Et₂PC) to give 2,3-di-O-benzyl-1-N-[N-(tert-butoxycarbonyl)-Laspart-1-oyl-(L-proline methyl ester)-4-oyl-4,6-O-isopropylidene- α , β -D-glucopyranosylamine (5α , 5β). The dipeptide (12) was obtained by coupling 4-benzyl N-(tert-butoxycarbonyl)-L-aspartate with L-proline methyl ester, followed by debenzylation. The amines 4α and 4β have the same $R_{\rm r}$ value and could not be isolated by chromatography. In the 13 C-n.m.r. spectrum of the mixture, the C-1 signal of the α -D-glycosylamine was at δ 78.7, and δ 86.6 for the β -D anomer. Similarly, the ¹H-n.m.r. spectrum of the α -D anomer was characterized by prominent, well resolved doublets in the range for H-la at δ 4.93 (J 4.95 Hz) and at δ 4.16 (J 8.61 Hz) for H-1 β of the sugar component.

Several conditions of azide reduction were examined (Table I). In each case, the β -D anomer was obtained in preponderant proportion. Use of Lindlar's catalyst in 1:1

TABLE I

Yield and ratio of anomers obtained under various conditions of reduction of azide 3

Reaction conditions	Solvent	Yield(%)a	Ratio of α-to-β anomer ^a
Reduction agent			
Lindlar's, Et ₃ N (1.25 eqs.)	Oxolan	95	1:6
Lindlar's, Et, N (1.25 eqs.)	1:1 Oxolan-methanol	95	2:11
Lindlar's, Et ₃ N (12.5 eqs.)	1:1 Oxolan-methanol	95	10:31
H ₂ S gas, Et ₃ N	4:1 Pyridine-water	65	b
NaBH	2-Propanol	80	1:6
PtO ₂ , Et ₃ N	Methanol	95	5:29

^a Yields and α -to- β ratios were calculated from integration of H-1 signal of the ¹H-n.m.r. spectra. ^b Only β anomer.

oxolane—methanol in the presence of a large amount of triethylamine, 5α and 5β in the ratio of 1:3. They were separated by silica gel column chromatography. The presence of a doublet at δ 5.75 (J 5.5 Hz) in the ¹H-n.m.r. spectrum of **5** α established the α -D configuration of the newly coupled residue. The β -p-linked anomer showed a signal at δ 6.06 (17.7 Hz). The isopropylidene group of both compounds was successively split off to give 6α and 6β . Condensation of 6α with 2,3,4,2',3',4',6'-hepta-O-acetyl- α -D-isomaltosyl bromide in the presence of mercuric cyanide in nitromethane afforded the desired $O-(2,3,4,6-\text{tetra}-O-\text{acetyl}-\alpha-D-\text{glucopyranosyl})-(1\rightarrow 6)-O-(2,3,4-\text{tri}-O-\text{acetyl}-\beta-D-\text{gluco-}$ pyranosyl)- $(1\rightarrow 6)$ -2,3-di-O-benzyl-1-N-[N-(tert-butoxycarbonyl)-L-aspart-1-oyl-(L-proline methylester)-4-oyl]-α-D-glucopyranosylamine (7a) in 62% yield. No other α-Dglycoside was observed in this reaction and the structure of 7α was unambiguously ascertained by ¹H-n.m.r. spectroscopy. The signals for the carbomethoxy methyl and tert-butoxy methyl groups appeared at δ 3.67 and 1.42, respectively, and that for the acetyl methyl groups at $\delta 2.00-2.11$. In the ¹³C-n.m.r. spectrum, the signal for C-1' was at δ 100.9, consistent with the newly introduced β -D-glycosyl linkage. The other ¹H-n.m.r. and ¹³C-n.m.r. data were in accordance with the proposed structure. Removal of the tert-butoxycarbonyl and methyl ester groups with 85% formic acid gave 8a, the acetyl group of which was removed to give 9a, and hydrogenation afforded the target

$$R^{3}OCH_{2}$$

$$R^{2}OCH_{2}$$

$$R^{3}OCH_{2}$$

$$R^{3}OCH_{2}$$

$$R^{3}OCH_{2}$$

$$R^{3}OCH_{2}$$

$$R^{3}OCH_{2}$$

$$R^{3}OCH_{2}$$

$$R^{3}OCH_{2}$$

$$R^{3}OCH_{2}$$

$$R^{3}OCH_{2}$$

$$R^{4}OCH_{2}$$

$$R^{4$$

TABLE II

"C-N.m.r. data (d) for glycopeptide derivatives 5-10 and 13"

Carbon atom	Compound	nnd												
	Şα	θα	7a	80	90	10a	S 8	68	78	88	86	10β	13	13 ^b
C-1	74.6	74.7	77.3	77.2	79.0	79.5	7.67	79.1	79.3	78.9	80.3	82.1		
2	77.3	77.5	7.77	7.77	82.8	72.3	80.7	81.1	80.7	80.5	82.0	74.4		
3	78.8	80.2	80.7	80.4	83.1	74.4	82.6	85.4	85.2	85.1	86.9	79.2		
4	64.0	70.9	.69.5	8.69	71.6	72.2°	8.89	6.69	68.4	68.2	71.7	72.2°		
5	72.8	74.7	71.5	72.5	6.77	74.8	74.5	8.9/	76.2	7.97	78.8	79.5		
9	62.4	62.1	67.4	67.5	71.3	71.3	62.2	61.4	67.2	67.3	71.3	72.1		
C-1,			100.9	100.4	104.3	105.4			100.5	6.66	104.8	105.7		
2,			71.2	71.3	76.4	75.8"			72.6°	72.6	.9.9/	74.7		
3,			72.8	72.7	77.4	78.8			72.8	72.6	77.9	78.7		
, 4			69.3	69.3	73.6	72.54			69.3	69.3	73.5	72.1°		
5,			72.3	72.6	76.2	77.2			71.4	71.4	76.4	77.2		
,9			999	9.99	9.69	6.89			66.4	9.99	6.69	68.3		
C-1,			636	95.8	26.6	8.001			92.6	95.4	8.66	100.7		
2″			70.1	70.1	73.8	74.7			70.3	70.1°	73.74	74.7		
3″			40.0^{4}	70.7	75.2	76.1			70.8	70.7	75.2	75.9		
, 4			68.5	68.5	73.6	72.6^{d}			68.7	68.4	73.54	72.3°		
5"			70.5^{d}	70.7	75.1	76.0°			70.1	70.0′	75.2	75.9		
,,9			6.19	619	62.5	63.6			61.9	62.1	62.5	63.3		
Asp-α′	49.5	49.7	49.5	52.7	55.6(c)	56.8(c)	49.2	48.9	49.6	52.3	55.3(c)	56.7(c)	54.2(c)	54.3
					53.0(t)	54.9(t)					53.4(t)	54.7(t)	53.9(t)	
β	36.5	38.9	39.6	36.6	39.7(c)	41.4(c)	39.9	39.3	40.5	36.2	40.2(c)	41.5(c)	38.0(t)	38.1
					36.3(t)	38.3(t)					35.9(t)	38.2(t)	36.4(c)	
Pro-α'	28.8	59.0	59.0	59.2	60.3(t)	61.9(t)	59.3	59.3	59.2	59.0	60.3(t)	61.3(t)	61.0(c)	8.09
					59.6(c)	61.1(c)					59.6(c)	61.2(c)	60.8(1)	
β	28.9	28.9	28.9	29.7	30.7(c)	31.0(c)	28.9	29.0	29.0	28.3	30.7(c)	31.1(c)	29.7(t)	29.5
					29.9(t)	30.5(t)					29.9(t)	30.7(t)	28.9(c)	
γ	24.8	24.8	24.9	22.6	23.5(t)	24.6(t)	24.8	24.7	25.0	22.5	23.4(t)	24.8(t)	25.8(c)	23.6
					22.8(c)	24.1(c)					22.8(c)	24.2(c)	23.8(t)	
ò	46.9	47.0	47.0	45.8	47.3(c)	48.5(c)	47.0	47.2	46.9	45.5	47.7(c)	48.7(c)	48.6(t)	47.2
					46.5(t)	48.4(t)					46.8(t)	48.5(t)	46.6(c)	

"For solutions of **5a, 5f, 6a, 6f, 7a, 7f, 8a**, and **8f** in CDCl₃; for solutions of **9a** and **9f** in CD₃OD, and for solutions of **10a, 10f**, and **13** in D₂O. * Recorded at 80°. * ** The values in each column may be interchanged. * (c) cis and (t) trans.

compound, O-(α -D-glucopyranosyl)-($1 \rightarrow 6$)-O- β -D-glucopyranosyl-($1 \rightarrow 6$)-1-N-[L-aspart-1-oyl-(L-proline)-4-oyl]- α -D-glucopyranosylamine (10α) in 93% yield. The configuration of 10α was confirmed by ¹H- and ¹³C-n.m.r. spectroscopy; signals for H-1, H-1', and H-1" were observed at δ 5.55 (J 5.3), 4.49 (J 7.9), and 4.93 (J 3.5 Hz), and signals for C-1, C-1', and C-1" at δ 79.5, 105.4, and 100.8 with ¹ J_{CH} 165.9, 162.3, and 169.7 Hz, respectively (see also Table II).

Condensation of 6β with 2,3,4,2',3',4',6'-hepta-O-acetyl- α -D-isomaltosyl bromide in the presence of silver triflate or mercuric cyanide afforded 7β in 40 and 15% yield, respectively. The β -D anomer of the trisaccharide-dipeptide (7β) was also prepared according to the method described for the α -D anomer.

The ¹³C-n.m.r. spectra of 9α , 9β , 10α , 10β , and 13, showed a doubling of the peptide peak which was anticipated because of the *cis-trans* isomerism present in these compounds. ¹³C-N.m.r. evidence of *cis-trans* isomerism of the amide bond involving the nitrogen atom of the proline residue was reported by Thomas and Williams⁷, and Dorman and Bovey⁸. The assignments of the *cis-* and *trans-*forms were based on analogy with the *N*-acetyl group of proline which prefers the *trans-*form in all solvents. In the case of peptides, the chemical-shift difference between the α -carbon atoms in the two forms of the proline residue is remarkably small, as is the corresponding shift between the carbon atoms, yet the signals for the β -and γ -carbon atoms in the two forms are well separated. In our synthetic glycopeptide, however, no such chemical-shift difference between the two forms of the proline residue could be observed, but the signals of the α -and β -carbon atoms of the asparagine residue were well separated.

EXPERIMENTAL

General methods. — Optical rotations were measured with a JASCO DIP-4 digital polarimeter. ¹H-N.m.r. spectra were recorded with a FX-100 spectrometer, and ¹³C-n.m.r. spectra with a GSX-400 instrument at room temperature; tetramethylsilane was the internal standard for solutions in CDCl₃ and CD₃OD, and sodium 4,4-dimethyl-4-silapentane-1-sulfonate for solutions in D₂O. Thin-layer chromatography was conducted on precoated silica gel plates (Merck GF-254), and the compounds were detected by quenching of u.v. fluorescence and by spraying with 10% H₂SO₄ or a 5% methanolic ninhydrin solution. Column chromatography was carried out on silica gel (Merck Kieselgel 60).

 α -D-Glucopyranosyl azide (1). — This compound was obtained by the procedure described in a previous paper⁶.

4,6-O-Isopropylidene- α -D-glucopyranosyl azide (2). — A mixture of 1 (12 g, 0.06 mol) and 2,2-dimethoxypropane (60 mL) in N,N-dimethylformamide (40 mL) was stirred for 12 h at room temperature in the presence of 4-toluenesulfonic acid (0.3 g). The solvent was evaporated in vacuo to give a syrup (13.82 g, 96.6%), $[\alpha]_{\rm b}^{25}$ + 184° (c 0.36, chloroform); ¹H-n.m.r. (CDCl₃); δ 5.42 (d, 1 H, J 3.8 Hz, H-1), 1.44, and 1.50 (each s, 3 H, CH₃).

Anal. Calc. for C₉H₁₅N₃O₅; C, 44.08; H, 6.16; N, 17.13. Found: C, 43.98; H, 6.19; N, 17.09.

76 T. TAKEDA et al.

2,3-Di-O-benzyl-4,6-O-isopropylidene- α -D-glucopyranosyl azide (3). — To a solution of 2 (7.14 g, 0.03 mol) in N,N-dimethylformamide (48 mL) was added NaH (9.6 g), and the mixture was stirred for 1 h. After cooling at 0°, benzyl bromide (12 mL) was added dropwise, and then the mixture was stirred for 4.5 h at 20°. Excess NaH was decomposed by addition of methanol and the mixture was partitioned between water and ethyl acetate. The organic layer was washed with water, dried (Na₂SO₄), and concentrated in vacuo. The syrup was purified by column chromatography to give 3 (5.04 g, 40.5%), m.p. 52° (from methanol), $[\alpha]_D^{24} + 88^\circ$ (c 0.40, chloroform); ¹H-n.m.r. (CDCl₃); δ 7.30–7.26 (m, 10 H, arom.), 5.12 (d, 1 H, J 4.0 Hz, H-1), 1.41, and 1.44 (each s, 3 H, CH₃).

Anal. Calc. for $C_{23}H_{27}N_3O_5$; C, 64.93; H, 6.40; N, 9.88. Found: C, 64.64; H, 6.52; N, 9.67.

2,3-Di-O-benzyl-4,6-O-isopropylidene- α , β -D-glucopyranosylamine (4 α , 4 β). — A solution of 3 (5.04 g, 0.01 mol) in 1:1 oxolan—methanol (135 mL) was hydrogenolyzed under atmospheric pressure in the presence of Lindlar's catalyst (3.5 g) and triethylamine (32 mL) for 24 h at room temperature. The catalyst was filtered off and the filtrate was evaporated to dryness to give 4 α , 4 β (4.66 g, 95%); ¹H-n.m.r. (CDCl₃): δ 4.93 (d, J4.95 Hz, H-1 α) and 4.16 (d, J 8.61 Hz, H-1 β).

Other conditions of reduction are shown in Table I. When H₂S was used, it was bubbled through a solution of 3 (20 mg) in pyridine (2 mL) and water (0.4 mL) in the presence of triethylamine for 48 h at room temperature while the solution was stirred.

[4-Benzyl N-(tert-butoxycarbonyl)-L-aspart-1-oyl]-L-proline methyl ester (11). — To a solution of L-proline methyl ester hydrochloride (17.8 g, 0.11 mol), triethylamine (18 mL), and 4-benzyl N-(tert-butoxycarbonyl)-L-aspartate (34.9 g, 0.11 mol) in dichloromethane–N,N-dimethylformamide 10:1 (v/v) (165 mL) was added diethyl cyanophosphonate (21 mL) and, after 12 h at room temperature, the mixture was extracted with ethyl acetate (250 mL). This solution was washed successively with saturated NaHCO₃ (2 × 50 mL), 10% citric acid (2 × 50 mL), and water, and dried (Na₂SO₄). After evaporation of the solvent in vacuo, the residue was chromatographed on silica gel with 10:1 benzene–acetone as the eluent. The fractions containing a material having R_F 0.78 (2:1 benzene–acetone) were pooled and evaporated (35.0 g, 75%), $[\alpha]_D^{24}$ –60° (c 2.3, chloroform); ¹H-n.m.r. (CDCl₃): δ 7.35 (m, 5 H, arom.), 5.12 (s, 2 H, PhC H_2), 3.63 (s, 3 H, OMe), and 1.42 (s, 9 H, CMe₃).

Anal. Calc. for $C_{22}H_{30}N_2O_7$; C, 60.82; H, 6.96; N, 6.45. Found: C, 60.72; H, 6.85; N, 6.63.

N-(tert-Butoxycarbonyl)-L-aspartyl-L-proline methyl ester (12). — A solution of 11 (6.44 g, 15 mmol) in ethanol (40 mL) was hydrogenated in the presence of 10% Pd–C (500 mg) under atmospheric pressure for 12 h at room temperature. The catalyst was filtered off and the filtrate was evaporated to dryness to give 12 (4.5 g, 88%), syrup, $[\alpha]_{\rm b}^{24}$ – 45° (c 1.6, chloroform), t.l.c. (2:1 benzene–acetone) $R_{\rm F}$ 0.06; ¹H-n.m.r. (CDCl₃): δ 3.68 (s, 3 H, OMe) and 1.42 (s, 9 H, CMe₃).

Anal. Calc. for $C_{15}H_{24}N_2O_7$; C, 52.32; H, 7.02; N, 8.13. Found; C, 52.54; H, 7.12; N, 8.25.

L-Aspartyl-L-proline (13). — A solution of 12 (927 mg, 2.69 mmol) in 85% formic acid (5 mL) was stirred for 3 h at room temperature, and then evaporated in vacuo. The residue was chromatographed on silica gel in 13:6:1 (v/v, lower phase) chloroform—methanol—water as an eluent to give 13, 71% yield, (440 mg), $[\alpha]_{\rm p}^{23}$ -86.5° (c 0.27, methanol).

Anal. Calc. for $C_9H_{14}N_2O_5$; C, 46.95; H, 6.13; N, 12.17. Found: C, 46.73; H, 6.25; N, 12.46.

2,3-Di-O-benzyl-1-N-(N/tert-butoxycarbonyl)- L-aspart-1-oyl-(L-proline methyl ester)-4-oyl]- α -4,6-O-isopropylidene- (5α) and - β -D-glucopyranosylamine (5β). — To a solution of 4α , β (1.06 g, 2.7 mmol) in oxolan (15 mL) were added dipeptide 12 (0.92 g, 2.7 mmol), diethyl cyanophosphonate (0.54 mL), and triethylamine (1.04 mL). The mixture was stirred for 8 h at room temperature, diluted with ethyl acetate (30 mL), and washed with water, 10% citric acid solution, and water, dried, and concentrated to give a syrup which was chromatographed on silica gel with 4:1 and then 3:1 (v/v) benzene-acetone. The first eluate was evaporated to dryness to give 5α (255 mg, 13.2%), $[\alpha]_{\rm D}^{24}$ —4.0° (c 5.9, chloroform), t.l.c. (2:1 benzene-acetone) $R_{\rm F}$ 0.72; ¹H-n.m.r. (CDCl₃): δ 5.75 (d, 1 H, J 5.5 Hz, H-1), 3.63 (s, 3 H, OMe), 1.42 (s, 9 H, CMe₃), 1.37, and 1.48 (each s, 3 H, Me). The latter eluate gave 5β (789 mg, 41.0%), $[\alpha]_{\rm D}^{24}$ +3.1° (c 0.9, chloroform). t.l.c. (2:1 benzene-acetone) $R_{\rm F}$ 0.65; ¹H-n.m.r. (CDCl₃): δ 6.06 (d, 1 H, J 7.7 Hz, H-1), 3.64 (s, 3 H, OMe), 1.42, 1.49 (each s, 3 H, Me), and 1.38 (s, 9 H, CMe₃).

Anal. Calc. for $C_{38}H_{51}N_3O_{11}$: C, 62.88; H, 7.08; N, 5.79. Found for 5α : C, 62.72; H, 7.03; N, 5.84. Found for 5β : C, 62.68; H, 7.02; N, 5.88.

2,3-Di-O-benzyl-1-N-[N-(tert-butoxycarbonyl)-L-aspart-1-oyl-(N-(tert-butoxycarbonyl)L-proline methyl ester)-4-oyl]- α -D-glucopyranosylamine (6a). — Compound 5a (450 mg, 0.63 mmol) was treated with 80% acetic acid (5 mL) at 40° for 3 h. The solution was concentrated to give a syrup (325 mg, 75%), [α]_D²⁴ +1.4° (c 3.4, chloroform); t.l.c. (10:1 chloroform-methanol) R_F 0.40; ¹H-n.m.r. (CDCl₃): δ 3.63 (s, 3 H, OMe) and 1.40 (s, 9 H, CMe₃).

Anal. Calc. for $C_{35}H_{47}N_3O_{11}$: C. 61.30; H, 6.91; N, 6.13. Found: C, 60.83; H, 6.61; N, 6.00.

β-D Anomer (6β). — This compound was prepared as described for 6α, yield 394 mg (91%), m.p. 92°, $[\alpha]_{\rm b}^{24}$ – 5.3° (c 0.4, chloroform), t.l.c. (10:1 chloroform–methanol) $R_{\rm F}$ 0.36; ¹H-n.m.r. (CDCl₃): δ 5.87 (d, J 8.4 Hz, H-1), 3.62 (s, 3 H, OMe), and 1.39 (s, 9 H, CMe₃).

Anal. Calc. for $C_{35}H_{47}N_3O_{11}$: C, 61.30; H, 6.91; N, 6.13. Found. C, 59.83; H, 6.75; N, 5.92.

O-(2,3,4,6-Tetra-O-acetyl- α -D-glucopyranosyl)- $(1\rightarrow 6)$ -O-(2,3,4-tri-O-acetyl- β -D-glucopyranosyl)- $(1\rightarrow 6)$ -2,3-di-O-benzyl-I-N-[N-(tert-butoxycarbonyl)-L-aspart-I-oyl-(L-proline methyl ester)-4-oyl]- α -D-glucopyranosylamine (7a). — To a solution of 6a (240 mg, 0.36 mmol) in nitromethane (8 mL) were added 2,3,4,2',3',4',6'-hepta-O-acetyl- α -D-isomaltosyl bromide (734 mg, 1.06 mmol), Hg(CN)₂ (400 mg), and molecular sieves 4A (320 mg), and the suspension was stirred for 6 h at 55° under Ar gas. The solids were filtered off, the filtrate was poured into water, extracted with chloroform, washed with water, and concentrated, and the residual crude product was chromatographed on silica

78 T. TAKEDA et al.

gel with 1:4 (v/v) hexane-ethyl acetate. The fractions containing the trisaccharide-dipeptide having $R_{\rm F}$ 0.30 (1:3 hexane-ethyl acetate) were pooled and concentrated (284 mg, 62%) [α]_D²⁴ + 26° (c 0.4, chloroform); ¹H-n.m.r. (CDCl₃); δ 7.36–7.24 (m, 10 H, arom), 3.67 (s, 3 H, OMe), 2.11–2.00 (each s, 21 H, 7 OAc), and 1.42 (s, 9 H, CMe₃).

Anal. Calc. for $C_{61}H_{81}N_3O_{28}$: C, 56.17; H, 6.26; N, 3.22. Found. C, 55.73; H, 6.10; N, 3.04.

β-D Anomer (7β). — To a solution of 6β (547 mg, 0.8 mmol) in nitromethane (8 mL) were added 2,3,4,2',3',4',6'-hepta-O-acetyl-α-D-isomaltosyl bromide (1.05 g, 1.5 mmol), silver triflate (205 mg), tetramethylurea (0.07 mL), and molecular sieves 4A (160 mg). The suspension was stirred for 2 h at -14° and then kept at room temperature for 6 h. The solids were filtered off, the filtrate was poured into water, extracted with chloroform, washed with water, and concentrated, and the residue was purified by column chromatography in 1:5 (v/v) hexane—ethyl acetate as an eluent. The fractions containing the trisaccharide-dipeptide having $R_{\rm F}$ 0.23 were concentrated to give 7β (418 mg, 40%); when Hg(CN)₂ was used, the yield was low (15%); [α]_D²⁴ +22° (c 2.7, chloroform), t.l.c. (1:3 hexane—ethyl acetate) $R_{\rm F}$ 0.23; ¹H-n.m.r. (CDCl₃): δ 7.36–7.24 (m, 10 H, arom.), 3.72 (s, 3 H, OMe), 2.09–2.00 (each s, 21 H, 7 OAc), and 1.40 (s, 9 H, CMe₃).

Anal. Calc. for $C_{61}H_{81}N_3O_{28}\cdot 2H_2O$; C, 54.66; H, 6.39; N, 3.14. Found. C, 54.52; H, 6.51; N, 3.26.

O-(2,3,4,6-Tetra-O-acetyl- α -D-glucopyranosyl)- $(1\rightarrow 6)$ -O-(2,3,4-tri-O-acetyl- β -D-glucopyranosyl)- $(1\rightarrow 6)$ -2,3-di-O-benzyl-1-N-[L-aspart-1-oyl-(L-proline)-4-oyl]- α -D-glucopyranosylamine (8a). — A solution of 7a (103.2 mg) in 85% formic acid (12 mL) was stirred for 5 h at room temperature, and then extracted with chloroform. The organic layer was concentrated to dryness to give 8a (yield 66.9 mg, 71%), [α]_D²⁴ +34° (c 0.5, chloroform), t.l.c. (12:1 chlororform—methanol) R_F 0.66; ¹H-n.m.r. (CDCl₃): δ 7.35–7.25 (m, 10 H, arom.) and 2.11–2.01 (each s, 21 H, 7 OAc).

Anal. Calc. for $C_{55}H_{71}N_3O_{26}$; C, 55.51; H, 6.01; N, 3.53. Found. C, 55.26; H, 5.72; N, 3.38.

β-D Anomer (8β). — This compound was prepared as described for 8α, yield 84.9 mg (90%), [α]_D²⁴ + 1.2° (c 1.3, chloroform), t.l.c. (12:1 chloroform–methanol) R_F 0.49; ¹H-n.m.r. (CDCl₃): δ 7.36–7.24 (m, 10 H, arom.) and 2.10–2.00 (each s, 21 H, 7 OAc). Anal. Calc. for C₅₅H₇₁N₃O₂₆; C, 55.51; H, 6.01; N, 3.53. Found. C, 55.72; H, 6.13;

N, 3.40.

O-α-D-Glucopyranosyl- $(1\rightarrow6)$ -O-β-D-glucopyranosyl- $(1\rightarrow6)$ -2,3-di-O-benzyl-1-N-[L-aspart-1-oyl-(L-proline)-4-oyl]-α-D-glucopyranosylamine (9α). — To a solution of 8α (48.9 mg, 42 μmol) in methanol (6 mL) was added sodium methoxide (90 mg). After 8 h, when deacetylation was complete [t.l.c. (chloroform-methanol-water 5:4:1) R_F 0.73], the solution was de-ionized with Amberlite IRC-50 (H⁺) cation-exchange resin and filtered from the resin. The filtrate was concentrated to give a syrup which was chromatographed on a column of Sephadex LH-20 with methanol to give 9α (36.6 mg, 99%), $[\alpha]_D^{1.3}$ + 44.5° (c 1.2, methanol); ¹H-n.m.r. (CD₃OD): δ 7.38–7.23 (m, 10 H, arom.).

Anal. Calc. for $C_{41}H_{57}N_3O_{19}\cdot 0.5H_2O$; C, 54.42, H, 6.46; N, 4.64. Found. C, 54.35; H, 6.17; N, 4.45.

 β -D Anomer (9 β). — This compound was prepared as described for 9α , yield 32.8 mg (89%); ¹H-n.m.r. (CD₃OD): δ 7.38–7.10 (m, 10 H, arom.).

Anal. Calc. for $C_{41}H_{57}N_3O_{19}\cdot0.5H_2O$; C, 54.42; H, 6.46; N, 4.64. Found. C, 54.29; H, 6.23; N, 4.72.

O-α-D-Glucopyranosyl- $(1\rightarrow6)$ -O-β-D-glucopyranosyl- $(1\rightarrow6)$ -1-N-[L-aspart-1-oyl-(L-proline)-4-oyl]-α-D-glucopyranosylamine (10α). — To a solution of 9α (24.4 mg, 28 μmol) in 1:1 ethanol-water (4 mL) was added 10% Pd-C (40 mg). The suspension was stirred for 24 h under H₂, and then filtered and concentrated to dryness. The residue was chromatographed on Sephadex G-10. The water eluate was lyophilized to give a white powder (18.2 mg, 93%), $[\alpha]_D^{23}$ +97° (c 0.3, water), t.l.c. (1:1:1:1 butanol-acetic acid-ethyl acetate-water) R_F 0.19; H-n.m.r. (D₂O): δ 5.55 (d, J 5.3 Hz, H-1), 4.93 (d, J 3.5 Hz, H-1"), and 4.49 (d, J 7.9 Hz, H-1").

Anal. Calc. for $C_{27}H_{45}N_3O_{19}\cdot 2.5H_2O$: C, 42.63; H, 6.62; N, 5.52. Found: C, 42.42; H, 6.25; N, 5.18.

β-L Anomer (10β). — This compound was prepared as described for 10α, yield 16.0 mg (82%), $[\alpha]_{\rm D}^{23} + 34^{\circ}$ (c 0.6, water), t.l.c. (1:1:1:1 butanol-acetic acid-ethyl acetate-water) $R_{\rm F}$ 0.19; ¹H-n.m.r. (D₂O): δ 4.973 (d, J 9.5 Hz, H-1), 4.970 (d, J 3.5 Hz, H-1"), and 4.522 (d, J 7.9, H-1').

Anal. Calc. for $C_{27}H_{45}N_3O_{19}$: C, 45.31; H, 6.34; N, 5.87. Found: C, 45.06; H, 6.55; N, 5.62.

ACKNOWLEDGMENTS

The authors thank Miss S. Kato and T. Matsui for recording the n.m.r. spectra, and Miss T. Naito for performing the microanalyses.

REFERENCES

- 1 T. Takeda, M, Sawaki, Y. Ogihara, and S. Shibata, Chem. Pharm. Bull., 37 (1989) 54-56.
- 2 S. Shibata, Y. Miyagawa, T. Naruse, and T. Takuma, J. Immunol., 102 (1969) 593-601.
- 3 S. Shibata and T. Nagasawa, J. Immunol., 106 (1971) 1284-1294.
- 4 S. Shibata, T. Takeda, and Y. Natori, J. Biol. Chem., 263 (1988) 12483-12485.
- 5 T. Takeda, Y. Sugiura, C. Hamada, R. Fujii, K, Suzuki, Y. Ogihara, and S. Shibata, Chem. Pharm. Bull., 29 (1981) 3196-3201; T. Takeda, Y. Sugiura, Y. Ogihara, and S. Shibita, Carbohydr. Res., 105 (1982) 271-275; T. Takeda, M. Sawaki, Y. Ogihara, and S. Shibata, ibid., 139 (1985) 133-140.
- 6 T. Takeda, Y. Sugiura, Y. Ogihara, and S. Shibata, Can. J. Chem., 58 (1980) 2600-2603.
- 7 W. A. Thomas and M. K. Williams, J. Chem. Soc., Chem. Commun., (1972) 994.
- 8 D. E. Dorman and F. A. Bovey, J. Org. Chem., 38 (1973) 2379-2383.